Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38676122

ABSTRACT

Recently, the utilization of metal halide perovskites in sensing and their application in environmental studies have reached a new height. Among the different metal halide perovskites, cesium lead halide perovskites (CsPbX3; X = Cl, Br, and I) and composites have attracted great interest in sensing applications owing to their exceptional optoelectronic properties. Most CsPbX3 nanostructures and composites possess great structural stability, luminescence, and electrical properties for developing distinct optical and photonic devices. When exposed to light, heat, and water, CsPbX3 and composites can display stable sensing utilities. Many CsPbX3 and composites have been reported as probes in the detection of diverse analytes, such as metal ions, anions, important chemical species, humidity, temperature, radiation photodetection, and so forth. So far, the sensing studies of metal halide perovskites covering all metallic and organic-inorganic perovskites have already been reviewed in many studies. Nevertheless, a detailed review of the sensing utilities of CsPbX3 and composites could be helpful for researchers who are looking for innovative designs using these nanomaterials. Herein, we deliver a thorough review of the sensing utilities of CsPbX3 and composites, in the quantitation of metal ions, anions, chemicals, explosives, bioanalytes, pesticides, fungicides, cellular imaging, volatile organic compounds (VOCs), toxic gases, humidity, temperature, radiation, and photodetection. Furthermore, this review also covers the synthetic pathways, design requirements, advantages, limitations, and future directions for this material.

2.
Chemosphere ; 354: 141592, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38467196

ABSTRACT

In this study, we utilized a navel hybrid material, prepared by fusing fluorescent Carbon Dots SyCDs, derived from syrup bottles, with curcumin. This innovative approach not only offers significant advancements in antimicrobial activity and bioimaging but also represents a stride in sustainable and eco-friendly nanotechnology. The core of our study is the development of an efficient, cost-effective, and environmentally conscious method for synthesizing SyCDs. This is achieved by repurposing waste syrup bottles, thus addressing the pressing issue of plastic waste. The incorporation of curcumin, renowned for its biological properties, enhances the luminescent characteristics of SyCDs and augments their functionality. This combination overcomes the inherent limitations of curcumin when used in isolation. The hybrid material exhibits enhanced antimicrobial properties and proves to be a potent alternative to conventional fluorescent dyes for bioimaging, marking a substantial leap in the field of sustainable nanomaterials. Our work not only demonstrates the versatile applications of luminescent SyCDs in health and environmental science but also underscores the potential of sustainable approaches in addressing global environmental challenges. This study, represents a significant contribution to the domain of sustainable nanotechnology, highlighting the transformative power of integrating waste management with advanced material science.


Subject(s)
Anti-Infective Agents , Curcumin , Quantum Dots , Curcumin/pharmacology , Anti-Infective Agents/pharmacology , Carbon , Consciousness , Fluorescent Dyes
3.
Environ Res ; 250: 118513, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368918

ABSTRACT

Carbon dots (CDs) are an emerging type of carbon nanomaterial with strong biocompatibility, distinct chemical and physical properties, and low toxicity. CDs may emit fluorescence in the ultraviolet (UV) to near-infrared (NIR) range, which renders them beneficial for biomedical applications. CDs are usually made from carbon precursors and can be synthesized using top-down and bottom-up methods and it can be easily functionalized using different methods. For specific cases of biomedical applications carbon dot functionalization augments the materials' characteristics. Novel functionalization techniques are still being investigated. This review will look at the benefits of functionalization to attain a high yield and various biological applications. Biomedical applications such as photodynamic and photothermal therapy, biosensing, bioimaging, and antiviral and antibacterial properties will be covered in this review. The future applications of green synthesized carbon dots will be determined in part by this review.

4.
Environ Res ; 244: 117888, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38097060

ABSTRACT

In the face of escalating environmental concerns, particularly the pervasive issue of non-biodegradable fast-food packaging waste, this study introduces a ground-breaking solution that not only addresses waste management but also advances biomedical technology. Utilizing the underexploited resource of Fucoidan, a sulfated polysaccharide from brown algae, we have innovatively transformed fast-food packaging waste into eco-friendly fluorescent carbon dots (FPCDs). These FPCDs were meticulously characterized through advanced techniques like FT-IR, TEM, and XRD, shedding light on their unique structure, morphology, and composition. A significant discovery of this study is the potent antimicrobial properties of these FPCDs, which demonstrate remarkable effectiveness against specific bacterial and fungal strains. This opens new avenues in the realm of biomedical applications, including imaging, drug delivery, and biosensing. Furthermore, extensive toxicity assessments, including the Brine shrimp lethality assay and Adult Artemia toxicity tests, underscore the safety of these nanoparticles, bolstering their applicability in sensitive medical scenarios. Our research presents a compelling dual approach, ingeniously tackling environmental sustainability issues by repurposing waste while simultaneously creating valuable materials for biomedical use. This dual benefit underscores the transformative potential of our approach, setting a precedent in both waste management and medical innovation.


Subject(s)
Anti-Infective Agents , Food Packaging , Food Loss and Waste , Carbon , Spectroscopy, Fourier Transform Infrared , Anti-Infective Agents/toxicity
5.
Prog Biophys Mol Biol ; 185: 17-32, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37821048

ABSTRACT

The convergence of biology and computational science has ushered in a revolutionary era, revolutionizing our understanding of biological systems and providing novel solutions to global problems. The field of genetic engineering has facilitated the manipulation of genetic codes, thus providing opportunities for the advancement of innovative disease therapies and environmental enhancements. The emergence of bio-molecular simulation represents a significant advancement in this particular field, as it offers the ability to gain microscopic insights into molecular-level biological processes over extended periods. Biomolecular simulation plays a crucial role in advancing our comprehension of organismal mechanisms by establishing connections between molecular structures, interactions, and biological functions. The field of computational biology has demonstrated its significance in deciphering intricate biological enigmas through the utilization of mathematical models and algorithms. The process of decoding the human genome has resulted in the advancement of therapies for a wide range of genetic disorders, while the simulation of biological systems contributes to the identification of novel pharmaceutical compounds. The potential of biomolecular simulation and computational biology is vast and limitless. As the exploration of the underlying principles that govern living organisms progresses, the potential impact of this understanding on cancer treatment, environmental restoration, and other domains is anticipated to be transformative. This review examines the notable advancements achieved in the field of computational biology, emphasizing its potential to revolutionize the comprehension and enhancement of biological systems.


Subject(s)
Computational Biology , Models, Biological , Humans , Computational Biology/methods , Computer Simulation , Models, Theoretical , Genetic Engineering
6.
Crit Rev Food Sci Nutr ; : 1-25, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37401803

ABSTRACT

Healthy humans and animals commonly harbor lactic acid bacteria (LAB) on their mucosal surfaces, which are often associated with food fermentation. These microorganisms can produce amphiphilic compounds, known as microbial surface-active agents, that exhibit remarkable emulsifying activity. However, the exact functions of these microbial surfactants within the producer cells remain unclear. Consequently, there is a growing urgency to develop biosurfactant production from nonpathogenic microbes, particularly those derived from LAB. This approach aims to harness the benefits of biosurfactants while ensuring their safety and applicability. This review encompasses a comprehensive analysis of native and genetically modified LAB biosurfactants, shedding light on microbial interactions, cell signaling, pathogenicity, and biofilm development. It aims to provide valuable insights into the applications of these active substances in therapeutic use and food formulation as well as their potential biological and other benefits. By synthesizing the latest knowledge and advancements, this review contributes to the understanding and utilization of LAB biosurfactants in the food and nutritional areas.

7.
Bioengineering (Basel) ; 10(3)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36978692

ABSTRACT

The current research is concerned with the synthesis of magnesium oxide (MgO) nanoparticles (NPs) from Abrus precatorius L. bark extract via the green chemistry method. The synthesized MgO NPs was confirmed by using several characterization methods like XRD, FTIR, SEM, TEM, and UV-visible analysis. The synthesized MgO NPs displayed a small particle size along with a specific surface area. Abrus precatorius bark synthesized MgO NPs with a higher ratio of dye degradation, and antioxidant activity showed a higher percentage of free radical scavenging in synthesized MgO NPs. Zebrafish embryos were used as a model organism to assess the toxicity of the obtained MgO nanoparticles, and the results concluded that the MgO NPs were nontoxic. In addition, the anticancer properties of MgO nanoparticles were analyzed by using a human melanoma cancer cell line (A375) via MTT, XTT, NRU, and LDH assessment. MgO NPs treated a human melanoma cancer cell line and resulted in apoptosis and necrosis based on the concentration, which was confirmed through a genotoxicity assay. Moreover, the molecular mechanisms in necrosis and apoptosis were conferred to depict the association of magnesium oxide nanoparticles with the human melanoma cancer cell line. The current study on MgO NPs showed a broad-scope understanding of the use of these nanoparticles as a medicinal drug for melanoma cancer via its physiological mechanism and also a novel route to obtain MgO NPs by using the green chemistry method.

8.
Life (Basel) ; 12(12)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36556378

ABSTRACT

Nanotechnology has the potential to revolutionize various fields of research and development. Multiple nanoparticles employed in a nanotechnology process are the magic elixir that provides unique features that are not present in the component's natural form. In the framework of contemporary research, it is inappropriate to synthesize microparticles employing procedures that include noxious elements. For this reason, scientists are investigating safer ways to produce genetically improved Cyanobacteria, which has many novel features and acts as a potential candidate for nanoparticle synthesis. In recent decades, cyanobacteria have garnered significant interest due to their prospective nanotechnological uses. This review will outline the applications of genetically engineered cyanobacteria in the field of nanotechnology and discuss its challenges and future potential. The evolution of cyanobacterial strains by genetic engineering is subsequently outlined. Furthermore, the recombination approaches that may be used to increase the industrial potential of cyanobacteria are discussed. This review provides an overview of the research undertaken to increase the commercial avenues of cyanobacteria and attempts to explain prospective topics for future research.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 273: 121043, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35189492

ABSTRACT

Hydrogen sulfide (H2S), one of redox-active sulfur species, is known as a signaling molecule and an antioxidant in biological tissues to maintain cellular functions. The development of selective and sensitive H2S detection is important to understand the role of H2S in vivo. Herein, a new two-photon probe NNE was developed to detect hydrogen sulfide using 6-acetyl-N-methyl-2-naphthylamine with an attachment of 7-nitrobenzo-oxadiazole. The probe NNE exhibits high selectivity towards hydrogen sulfide over other anions. Nucleophilic substitution of H2S leads to a turn-on response with 28-fold enhancement in quantum yield (from 0.004 to 0.117). NNE shows a high sensitivity towards hydrogen sulfide with an extremely low detection limit at 6.8 nM. Furthermore, the probe NNE exhibits two-photon excited fluorescence, making it a suitable probe for monitoring H2S distribution in live cells and tissues without background fluorescence interference.


Subject(s)
Hydrogen Sulfide , Diagnostic Imaging , Fluorescent Dyes , HeLa Cells , Humans , Optical Imaging , Oxidation-Reduction , Photons
10.
ACS Appl Mater Interfaces ; 13(24): 28610-28626, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34110776

ABSTRACT

The development of aggregation-induced emission enhancement (AIEE) active nanoprobes without any synthetic complication for solution-state and organic thin-film transistor (OTFT)-based sensory applications is still a challenging task. In this study, the novel pyrene-incorporated Schiff base (5-phenyl-4-((pyren-1-ylmethylene)amino)-4H-1,2,4-triazole-3-thiol; PT2) with an AIEE property was synthesized via a one-pot reaction and was reported for detecting Zn2+ and tyrosine in the solution state and OTFT. In the AIEE studies of PT2 (in CH3CN) at various water fractions (fw: 0-97.5%), the existence of J-aggregation, crystalline changes, and nanofibers formation was confirmed by ultraviolet absorption/photoluminescence (UV/PL) spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and dynamic-light scattering (DLS) techniques. Similarly, PT2-based Zn2+ detection and sensory reversibility with tyrosine were demonstrated by UV/PL studies with evidence related to crystalline/nanolevel changes in PXRD, SEM, TEM, AFM, and DLS data. Distinct decay profiles associated with the AIEE and sensory responses of PT2 were observed in time-resolved photoluminescence spectra. From the standard deviation and linear fittings of PL titrations, detection limits (LODs) of the Zn2+ with PT2 and the tyrosine with PT2-Zn2+ were estimated as 0.79 and 45 nM, respectively. High-resolution mass and 1H NMR results confirmed 2:1 and 1:1 stoichiometry and binding sites of PT2-Zn2+-PT2* and tyrosine-Zn2+ complexes. Moreover, the values of association constants determined by linear fittings were 4.205 × 10-7 and 1.73 × 10-8 M-2, correspondingly. Optimization via the density functional theory disclosed the binding sites and suppression of twisted intramolecular charge transfer/photoinduced electron transfer (TICT/PET) as well as the involvement of restricted intramolecular rotation in the AIEE and PET "ON-OFF-ON" mechanisms in the Zn2+ and tyrosine sensors. Results from the B16-F10 cellular and zebrafish imaging of AIEE, Zn2+, and tyrosine sensors further attested the applicability of PT2 in biological samples. Finally, the PT2 and pentacene-incorporated OTFT devices were fabricated. The devices displayed more than 90% change in drain-source current when reacted with Zn2+ with an LOD of 5.46 µM but showed no response to tyrosine, thereby confirming the reversibility. Moreover, the OTFT devices also demonstrated Zn2+ ion detection in tap water and lake water samples.


Subject(s)
Fluorescent Dyes/chemistry , Pyrenes/chemistry , Tyrosine/analysis , Zinc/analysis , Animals , Density Functional Theory , Drinking Water/analysis , Electrochemical Techniques/methods , Fluorescent Dyes/chemical synthesis , Lakes/analysis , Limit of Detection , Models, Chemical , Pyrenes/chemical synthesis , Schiff Bases/chemical synthesis , Schiff Bases/chemistry , Transistors, Electronic , Zebrafish
11.
J Pharm Biomed Anal ; 190: 113545, 2020 Oct 25.
Article in English | MEDLINE | ID: mdl-32846402

ABSTRACT

Hypochlorous acid (HOCl) is involved in numerous cellular processes, such as pathogen response, immune regulation, and anti-inflammation. Consequently, the development of HOCl detection at the cellular level has been an important issue in investigating the dynamic distributions of HOCl. Herein, a fluorescent probe, Lyso-NA, containing a HOCl-reactive aminophenol group and a lysosomal-targeting morpholine group, has been effectively designed for detecting lysosomal HOCl. The reaction of Lyso-NA with HOCl induces the oxidation of aminophenol and accompanied by a 136-fold fluorescence enhancement. The detection limit is found at 13 nM. The fluorescence enhancement is accomplished through the suppression of twisted intramolecular charge transfer (TICT). With morpholine, the probe Lyso-NA shows the great lysosomal targetable ability for imaging endogenous lysosomal HOCl in living cells and tissues by two-photon microscopy, providing an opportunity to monitor HOCl in the lysosomes for understanding its biological functions.


Subject(s)
Fluorescent Dyes , Hypochlorous Acid , Animals , Lysosomes , Mice , Optical Imaging , RAW 264.7 Cells
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 242: 118757, 2020 Dec 05.
Article in English | MEDLINE | ID: mdl-32791389

ABSTRACT

A novel rhodamine-pyridine conjugated spectroscopic probe RhP was synthesized and its X-ray single crystalline properties were revealed with tabulation. The RhP displayed a distinct pale-pink colorimetric and "turn-on" fluorescent response to Fe3+ in aqueous media [H2O:DMSO (95:5, v/v)] than that of other interfering ions. During the Fe3+ recognition, the absorption (UV-Vis) and photoluminescence (PL) spectral studies revealed new peaks at 561 and 592 nm, respectively. The 1:1 stoichiometry and binding sites were verified by Job's plot, ESI-mass, and 1H NMR titrations. Subsequently, LOD and binding constant for RhP + Fe3+ complex were estimated as 102.3 nM and 6.265 × 104 M-1 from linear fitting and Benesi-Hildebrand plots, correspondingly. Sensor reversibility of RhP + Fe3+ by EDTA was demonstrated by UV/PL and TRPL investigations. Moreover, the photoinduced energy transfer mechanism and band gap changes were established from the DFT interrogations. Lastly, cellular imaging studies were carried out to authenticate the real applicability of RhP in Fe3+ detection.


Subject(s)
Colorimetry , Fluorescent Dyes , Ions , Rhodamines , Water
13.
ACS Omega ; 5(31): 19896-19904, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32803086

ABSTRACT

The homeostasis of short-lived reactive species such as hydrogen sulfide/hypochlorous acid (H2S/HOCl) in biological systems is essential for maintaining intercellular balance. An unchecked increase in biological H2S concentrations impedes homeostasis. In this report, we present a molecular probe pyrene-based sulfonyl hydrazone derived from pyrene for the selective detection of H2S endogenously as well as exogenously through a "turn-off" response in water. The structure of the receptor is confirmed by Fourier-transform infrared spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopy, electrospray ionization mass spectrometry, and single-crystal X-ray diffraction studies. The receptor shows excellent green emission in both the aqueous phase and solid state. Quenching of green emission of the receptor is observed only when H2S is present in water with a detection limit of 18 nM. Other competing anions and cations do not have any influence on the receptor's optical properties. The efficiency of H2S detection is not negatively impacted by other reactive sulfur species too. The sensing mechanism of H2S follows a chemodosimetric reductive elimination of sulfur dioxide, which is supported by product isolation. The receptor is found to be biocompatible, as evident by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and its utility is extended to endogenous and exogenous fluorescence imaging of HeLa cells and zebrafish.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 233: 118234, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32163873

ABSTRACT

Hypochlorous acid has played several functions in the biological system. However, excess HOCl can cause damage to biomolecules and result in some diseases. Accordingly, a new fluorescent probe, BSP, has been developed for fast recognition of HOCl through the HOCl-induced oxidation of methyl phenyl sulfide to sulfoxide. The reaction of BSP with HOCl caused a 22-fold fluorescence enhancement (quantum yield increase from 0.006 to 0.133). The detection limit of HOCl is found to be 30 nM (S/N = 3). The fluorescence enhancement is due to the suppression of the photo-induced electron transfer from the methyl phenyl sulfide moiety to BODIPY. Eventually, the cellular fluorescence imaging experiment showed that BSP could be effectively used for monitoring HOCl in living cells.


Subject(s)
Fluorescent Dyes/chemistry , Hypochlorous Acid , Animals , Hypochlorous Acid/analysis , Hypochlorous Acid/metabolism , Mice , Microscopy, Fluorescence , Oxidation-Reduction , RAW 264.7 Cells , Safrole/analogs & derivatives , Safrole/chemistry , Sulfides/chemistry
15.
ACS Appl Mater Interfaces ; 12(9): 10959-10972, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32026696

ABSTRACT

A novel amphiphilic aggregation-induced emission (AIE) copolymer, that is, poly(NIPAM-co-TPE-SP), consisting of N-isopropylacrylamide (NIPAM) as a hydrophilic unit and a tetraphenylethylene-spiropyran monomer (TPE-SP) as a bifluorophoric unit is reported. Upon UV exposure, the close form of non-emissive spiropyran (SP) in poly(NIPAM-co-TPE-SP) can be photo-switched to the open form of emissive merocyanine (MC) in poly(NIPAM-co-TPE-MC) in an aqueous solution, leading to ratiometric fluorescence of AIEgens between green TPE and red MC emissions at 517 and 627 nm, respectively, via Förster resonance energy transfer (FRET). Distinct FRET processes of poly(NIPAM-co-TPE-MC) can be observed under various UV and visible light irradiations, acid-base conditions, thermal treatments, and cyanide ion interactions, which are also confirmed by theoretical studies. The subtle perturbations of environmental factors, such as UV exposure, pH value, temperature, and cyanide ion, can be detected in aqueous media by distinct ratiometric fluorescence changes of the FRET behavior in the amphiphilic poly(NIPAM-co-TPE-MC). Moreover, the first FRET sensor polymer poly(NIPAM-co-TPE-MC) based on dual AIEgens of TPE and MC units is developed to show a very high selectivity and sensitivity with a low detection limit (LOD = 0.26 µM) toward the cyanide ion in water, which only contain an approximately 1% molar ratio of the bifluorophoric content and can be utilized in cellular bioimaging applications for cyanide detections.


Subject(s)
Cyanides/analysis , Fluorescence Resonance Energy Transfer/methods , Polymers/chemistry , Water Pollutants/analysis , Acrylamides/chemistry , Fluorescence , Fluorescence Resonance Energy Transfer/instrumentation , Fresh Water/analysis , Hydrophobic and Hydrophilic Interactions , Limit of Detection
16.
ACS Appl Bio Mater ; 3(9): 6439-6446, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-35021775

ABSTRACT

Luminescent carbon dots (CDs) have become attractive materials because of their superior photophysical properties and various potential applications. However, most of the formerly developed CDs only have strong blue emission, which limits their further applications, particularly in bioimaging. Herein luminescent CDs have been successfully synthesized via a one-pot solvothermal process using 4-bromoaniline and ethylenediamine as starting materials. The luminescent CDs emit strong green fluorescence with high quantum yield as well as excellent biocompatibility and biolabeling potentials. At first, the luminescent CDs exhibited high selectivity for phosgene with a turn-off fluorescence detection. The limit of detection was 81 nM, which is sensitive for the determination of phosgene over other competing toxic pollutants. In addition, the luminescent CDs have shown a three-state "on-off-on" emission with the stepwise addition of Ag+ and cysteine (Cys). Luminescent CDs show fluorescence quenching by Ag+ and fluorescence regaining with further addition of Cys, with lower detection limits of 3.9 µM (Ag+) and 3.4 µM (Cys), respectively. The luminescent CDs were utilized to obtain a clear fingerprint. During the drying process, the coffee ring effect and electrostatic interaction between the positive surface charge of amine-functionalized CDs and negatively charged fingerprint residues facilitate the formation of clear fingerprints on different platforms.

17.
Mikrochim Acta ; 186(12): 788, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31732881

ABSTRACT

Highly emissive cysteamine-capped gold-copper bimetallic nanoclusters (CA-AuCu NCs) with a quantum yield of 18% were synthesized via one-pot anti-galvanic reduction. The CA-AuCu NCs were characterized by HR-TEM, XPS, FTIR, MALDI-TOF mass spectrometry, DLS, and zeta potential analyses. The NCs are shown to be viable fluorescent probes for Cr(VI) ions and dopamine (DA) via quenching of the blue fluorescence, typically measured at excitation/emission wavelengths of 350/436 nm. During DA recognition, a dark brown color appears, which is distinguishable from that of Cr(VI) detection. The aggregation induced quenching due to electron transfer was demonstrated by photoluminescence, HR-TEM, FTIR, DLS, and zeta potential interrogations. In buffer of pH 7, response is linear in the 0.2 ~ 100 µM for Cr(VI) and from 0.4 ~ 250 µM for DA. The respective detection limits are 80 and 135 nM. The method was applied to the determination of both Cr(VI) and DA in (spiked) tap, lake and sea water, and in human urine samples. The low toxicity of CA-AuCu NCs was validated by the MTT assay, and their responses to Cr(VI) ions and DA was also proven by Raw 264.7 cell imaging. Graphical abstractCysteamine capped Au-Cu nanoclusters (CA-AuCu NCs) were synthesized via one-pot anti-galvanic reduction and utilized in sensing of Cr(VI) ions and dopamine (DA) with demonstrated real/urine and cell imaging applications.

18.
Methods ; 168: 18-23, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31055073

ABSTRACT

The development of fluorescent probes to detect trace metal ions in biological samples has been in great need. Herein, a fluorescence turn-on sensor (PHC) was designed for highly selective detection of Cu2+ ions. The probe PHC shows weak fluorescence due to imine isomerization. With Cu2+, a significant blue emission due to Cu2+-induced oxidation of imine to a carboxylate group is observed. The turn-on process is observed with a 63-fold increase of fluorescence quantum yield (from 0.004 to 0.252). The emission intensity has a good linear relation at Cu2+ concentrations of 0-40 µM. The detection limit is estimated as 8 nM (S/N = 3). The maximum emission change induced by Cu2+ is found in the pH range of 6.5-8.0. The probe PHC can be applied in detecting Cu2+ in living cells monitored by confocal fluorescence microscopy imaging.


Subject(s)
Copper/analysis , Fluorescent Dyes/chemistry , Nanotechnology/methods , Animals , Cations , Coumarins/chemistry , Fluorescence , HT29 Cells , HeLa Cells , Humans , Hydrogen-Ion Concentration , Imines/chemistry , Ions , Limit of Detection , Linear Models , Magnetic Resonance Spectroscopy , Mice , Microscopy, Confocal , Oxygen/chemistry , RAW 264.7 Cells , Spectrometry, Fluorescence , Umbelliferones/chemistry
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 219: 135-140, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31030041

ABSTRACT

The need in developing fluorescent probes for trace metal ion detection in biological samples has been an important issue. Herein, a reaction-based fluorescent probe PIC containing a perimidine moiety was designed and synthesized for Hg2+ detection. The probe can selectively distinguish Hg2+ with 42-fold fluorescent enhancement from the other metal ions at physiological pH. This probe can detect Hg2+ with the detection limit of 1.08 µM. The sensor PIC can be applied to real-time detection of Hg2+ in cells with blue emission.


Subject(s)
Coumarins/chemistry , Fluorescent Dyes/chemistry , Mercury/analysis , Animals , Cations, Divalent/analysis , HeLa Cells , Humans , Optical Imaging/methods , Spectrometry, Fluorescence/methods , Zebrafish/embryology
20.
Org Biomol Chem ; 17(14): 3538-3544, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30896014

ABSTRACT

Fluorescence imaging is a dynamic tool for monitoring the functions of biomolecules in living systems. Probes with emission in the far-red to near-infrared range have been found to demonstrate great application prospects in bioimaging due to their deep tissue penetration, low background fluorescence, minimum photodamage to the tissue and high sensitivity. The present study aimed to construct a far-red to near-infrared emitting probe (PI) bearing dicyanoisophorone coupled with a phenothiazine moiety. The probe exhibits an instant response towards HOCl with a colour change from red to yellow with a 100 fold fluorescence enhancement at 620 nm with a low detection limit (42 nM). The electron-rich sulfur atom can be oxidised by HOCl; this endows the probe with distinct selectivity over other anions as well as other reactive oxygen species. The probe demonstrates great cell permeability with low toxicity to the cell. Therefore, the probe can be effectively applied in biological systems to monitor the endogenous level of HOCl produced by PMA in living systems and in the fluorescence imaging of endogenous HOCl in zebrafish and the RAW 264.7 cell line.


Subject(s)
Fluorescent Dyes/analysis , Hypochlorous Acid/analysis , Optical Imaging , Zebrafish , Animals , Fluorescent Dyes/chemistry , Infrared Rays , Mice , Microscopy, Fluorescence , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...